S4	December A/B Revision 2 – Non Calculator	20
1	Multiply out the brackets and collect like terms $(2x + 5)(x^2 - 3x + 1)$	3
2	Solve the equation $\frac{x}{6} - \frac{1}{2} = 5$	2
3	Calculate the median and the semi-interquartile range for this data set	
	18 16 26 24 14 16 19 20 27 30	2
4	Solve algebraically the system of equations	
	2x + 3y = 3 5x + 2y = 13	3
5	Express $\frac{2}{x+1} + \frac{3}{x-1}$, $x \neq -1$, $x \neq 1$	
	as a single fraction in its simplest form	3
6	Express $\frac{6}{\sqrt{2}}$ with a rational denominator in its simplest form	2
7	A parabola has equation $y = x^2 - 6x + 11$	
	(a) Write the equation of the parabola in the form $y = (x - a)^2 + b$	2
	(b) State the coordinates of	
	(i) The turning point of this parabola(ii) The point of intersection with the <i>y</i>-axis	2 1

	Revision 2 Non Calculator Answers
1	$(2x+5)(x^2-3x+1) = 2x^3 - 6x^2 + 2x + 5x^2 - 15x + 5 = 2x^3 - x^2 - 13x + 5$
2	$\frac{x}{6} - \frac{1}{2} = 5$, multiply through by 6 $x - 3 = 30$, $x = 33$
3	Median is 19.5 Q_1 is 16, Q_3 is 26 SIQR is 5
4	2x + 3y = 3 Scale $10x + 15y = 15$
	$5x + 2y = 13 \qquad \qquad \underline{10x + 4y = 26}$
	11y = -11, y = -1, x = 3
5	2 3 $2(x-1) + 3(x+1)$ $5x + 1$
	$\frac{1}{x+1} + \frac{1}{x-1} = \frac{1}{(x+1)(x-1)} = \frac{1}{(x+1)(x-1)}$
6	$6 6\sqrt{2} 2 \sqrt{2}$
	$\frac{1}{\sqrt{2}} = \frac{1}{2} = 3\sqrt{2}$
7	(a) $x^2 - 6x + 11 = (x - 3)^2 + 2$
	(b) Turning point is (3, 2), y-intercept is (0,11)

	Revision 2 Calculator Answers
1	$42 \times 1.08^4 = 57.14053$ 57 miles
2	$V = \frac{4}{3} \times \pi \times 1823^3 = 2.537748709 \times 10^{10} = 2.5 \times 10^{10} \text{ km}^3$
3	$POS = 180^{\circ} - 2 \times 28^{\circ} = 124^{\circ}$, $SOQ = 180^{\circ} - 124^{\circ} = 56^{\circ}$, $QRS = 90^{\circ} - 56^{\circ} = 34^{\circ}$
4	(a) $4x^2 - 1 = (2x + 1)(2x - 1)$
	(b) $(2x+1)(2x-1) = 0$, $x = -\frac{1}{2}$ or $x = \frac{1}{2}$
5	$l = \sqrt{2t-a} \rightarrow l^2 = 2t-a \rightarrow l^2 + a = 2t \rightarrow t = \frac{l^2+a}{2}$
6	For right-angled triangles $c^2 = a^2 + b^2$, $100^2 = 55^2 + 80^2$, $100^2 = 10000$, $55^2 + 80^2 = 9425$
	$10000 \neq 9425$, so by the Converse of Pythagoras this tile is not a right-angle triangle
7	(a) $5x + 2y = 20$, $y = -\frac{5}{2}x + 20$ gradient is $-\frac{5}{2}$
	(b) $x - \text{intercept}$, $y = 0$, $5x = 20$, $x = 4$ (4,0)
8	$Arc = \frac{\theta}{360^{\circ}} \times \pi D, 30 = \frac{65^{\circ}}{360} \times \pi D, \frac{10800}{65 \times \pi} = D, D = 52.888 \text{ cm},$
	The length of the pendulum is $52.888 \div 2 = 26.4$ cm
9	Establish a right-angled triangle 7 cm 11 cm
	Use Pythagoras
	$PA = \sqrt{11^2 - 7^2} = 8.458 \ cm$
	PQ is $2 \times PA = 16.97 = 17 \ cm$